Study
Engineering modular light-driven yeast biohybrid platform
Inorganic-biological hybrid systems hold the potential to become sustainable, efficient, and versatile platforms for chemical synthesis by combining the light-harvesting properties of semiconductors with the synthetic capabilities of biological cells (Science 362, 813-816, 2018). Meanwhile, yeast was reported to use light as an energy source by adding a special light-sensitive protein (Current Biology 34, 648–654, 2024). Porphyrin based metal organic frameworks are promising nanomaterials which can efficiently captures light and facilitates the transfer of photo-generated electrons into biological cells. Few studies have explored the feasibility of this biohybrid strategy for improved cell fitness and producing chemicals. This project aims to first utilize state-of-the-art synthetic biology tools to construct advanced yeast cell factories capable of utilizing light or producing high-value compounds, followed by the verification of the efficiency and modularity of a light-driven yeast-nanomaterials biohybrid system. This project is a collaboration between UQ Biosustainability hub and UQ Dow Centre.
Supervisors
Dr Huadong Peng
Emerging Group Leader, Peng Group
huadong.peng@uq.edu.au
Start your PhD journey
with AIBN