Study
Metabolic dynamics of synthetic microbial communities
Microbial communities have attracted interest due to their wide applications in industrial processes (such as the production of biochemicals, biofuels, biomedicines and biomaterials) and their important role in human, animal and crop health. Despite the importance of microbial communities, we still know little about how communities are established and maintained, which restricts our ability to engineer them for either improving human health or industrial purposes. Our previous work has established a molecular toolkit that can build various types of synthetic yeast communities from scratch via the cross-feeding metabolic exchange (Peng et al. 2024 Nature Microbiology 9(3): 848-863.). However, the long-term stability of these communities is not known but essential for practical applications in the bioprocess of precision fermentation. This project aims to understand and control the stability of synthetic yeast communities in the long-term by combining the state of art synthetic biology tools and the open-source robotic bioreactor platform, Chi.Bio.
Supervisors
Dr Huadong Peng
Emerging Group Leader, Peng Group
huadong.peng@uq.edu.au
Start your PhD journey
with AIBN