Study

Structural anisotropy in viscoelastic materials is desirable for directional-dependent responses to external stimuli (mechanical, electric field, temperature) and transport processes (diffusion, permeability, poroelasticity). It is commonly observed in nature within biological materials where it is crucial to the function of the eye (cornea, vitreous), muscles, and plant growth. However, the fabrication of viscoelastic synthetic materials (hydrogels) with complex structural anisotropy, particularly with the spatial heterogeneity required for biomimicry, has proved very difficult. This project seeks to address this by using charge directed self-assembly of block copolymers to modify the surface properties of nanocelluose, a naturally derived crystalline polymer. This change to the surface chemistry will manipulate the phase properties of these materials to form hydrogels that have applications ranging from biomaterials, to sensors and food additives.

  Are you interested in a PhD at the AIBN? Click here, and start your journey today.